

Exemples d'épreuves orales de Mathématiques

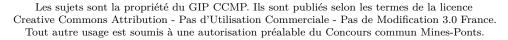
Concours commun Mines-Ponts

Mars 2025

Ce document contient quelques exemples d'exercices qui peuvent être posés à l'oral de Mathématiques.

> Le déroulement de l'oral est décrit dans le règlement du concours, page 4, §1.1.3.

Le candidats sont invités à lire le rapport d'oral 2024.



Épreuve Nº 1 - Filière MP

• 1^{er} exercice.

À quelle condition nécessaire et suffisante portant sur a_0 , la suite définie par :

$$a_{n+1} = 2^n - a_n,$$

est-elle croissante?

• $2^{\grave{e}me}$ exercice.

Trouver les matrices $M \in \mathcal{M}_2(\mathbb{R})$ telles que :

$$M^3 + 2M = \begin{pmatrix} 3 & 5 \\ 0 & -12 \end{pmatrix}.$$

Épreuve Nº 2 - Filière MP

• 1^{er} exercice.

On définit une suite $(u_n)_{n\in\mathbb{N}}$ par son premier terme $u_0\in[0,\frac{\pi}{2}]$, et la relation de récurrence

$$u_{n+1} = \sin(u_n).$$

Déterminer un développement limité à deux termes de la suite $(u_n)_{n\in\mathbb{N}}$.

• $2^{\grave{e}me}$ exercice.

On désigne par G un sous-ensemble de $\mathcal{M}_n(\mathbb{R})$, et on suppose que (G, \times) est un groupe, où \times désigne le produit interne de $\mathcal{M}_n(\mathbb{R})$.

- 1. Démontrer que tous les éléments de G ont le même rang.
- 2. Démontrer qu'il existe une matrice $P \in GL_n(\mathbb{R})$, et un sous-groupe H de $GL_r(\mathbb{R})$ tels que :

$$G = \left\{ P^{-1} \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} P, \ A \in H \right\}.$$

Épreuve N° 3 - Filière MP

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé, X et Y des variables aléatoires discrètes, et $(X_n)_n$, $(Y_n)_n$ des suites de variables aléatoires discrètes. On note (\star) la condition suivante :

$$\forall \epsilon > 0 \quad \mathbb{P}(|\mathbf{X}_n - \mathbf{X}| \ge \epsilon) \xrightarrow[n \to +\infty]{} 0 \text{ et } \mathbb{P}(|\mathbf{Y}_n - \mathbf{Y}| \ge \epsilon) \xrightarrow[n \to +\infty]{} 0 \quad (\star)$$

1. Soit x, y réels et $\epsilon > 0$. Justifiez l'implication :

$$|x+y| \ge \epsilon \quad \Longrightarrow \quad |x| \ge \frac{\epsilon}{2} \text{ ou } |y| \ge \frac{\epsilon}{2}$$

2. On suppose la condition (*) satisfaite. Établir :

$$\forall \epsilon > 0 \quad \mathbb{P}(|X_n + Y_n - (X + Y)| \ge \epsilon) \xrightarrow[n \to +\infty]{} 0.$$

3. Application : Soit $(U_n)_n$ une suite de variables aléatoires indépendantes de même loi $\mathcal{B}(p)$, avec $p \in [0; 1]$ et $V_n = U_n + U_{n+1}$, pour tout n entier. Établir :

$$\forall \epsilon > 0 \quad \mathbb{P}(\frac{1}{n} \sum_{i=1}^{n} V_i - 2p \ge \epsilon) \xrightarrow[n \to +\infty]{} 0.$$

4. Soit X une variable aléatoire réelle discrète. Établir

$$\mathbb{P}(|X| > M) \xrightarrow{M \to +\infty} 0.$$

5. On suppose la condition (*) satisfaite. Établir :

$$\forall \epsilon > 0 \quad \mathbb{P}(|\mathbf{X}_n \mathbf{Y}_n - (\mathbf{X}\mathbf{Y})| \ge \epsilon) \xrightarrow[n \to +\infty]{} 0.$$

Épreuve Nº 4 - Filière MP

• 1^{er} exercice.

Soient E un \mathbb{K} -espace vectoriel ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) et $f \in \mathcal{L}(E)$, tel qu'il existe $p \in \mathbb{N}$ tel que $f^{p+2} = f^p$.

- a. Que dire de f si p = 0?
- b. Que dire de f si $f \in GL(E)$?
- c. Justifier que $E = \ker(f^p) \oplus \ker(f^p id)$.

On suppose désormais que E est de dimension finie.

- d. Donner une condition nécessaire et suffisante sur f pour que f soit diagonalisable.
- e. On suppose p pair. Montrer que $E = \ker(f^p) \oplus \ker(f^p id)$.
- f. On suppose p impair. Montrer que $\ker(f^p id) = \ker(f id)$, puis que f^p est diagonalisable.
- $2^{\grave{e}me}$ exercice.

Pour tout
$$n \in \mathbb{N}^*$$
, on pose $u_n = \sum_{k=1}^n \frac{\ln k}{k}$ et $v_n = u_n - \frac{1}{2}(\ln n)^2$.

- a. À l'aide d'une comparaison série-intégrale, déterminer un équivalent simple de u_n .
- b. Étudier la suite de terme général v_n (variations, convergence).
- c. On rappelle que $\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1)$ où γ est un réel fixé appelé constante d'Euler.

Après avoir justifié que la série converge, montrer que $\sum_{k=1}^{+\infty} (-1)^k \frac{\ln k}{k} = \ln 2 \left(\gamma - \frac{\ln 2}{2} \right)$.

Épreuve Nº 5 - Filière MP

Soient $(a,b) \in \mathbb{R}^2$ tel que $a < b, n \in \mathbb{N}^*, (x_i)_{i \in \mathbb{N}_n} \in [a,b]^{\mathbb{N}_n}$ et $(y_i)_{i \in \mathbb{N}_n} \in [a,b]^{\mathbb{N}_n}$. On note E l'ensemble $C^0([a,b],\mathbb{R})$ (que l'on suppose muni de la norme de la convergence uniforme) et P l'ensemble des applications polynomiales de [a,b] dans \mathbb{R} .

Montrer que l'adhérence de l'ensemble,

$$\{p \in P, \forall i \in \mathbb{N}_n, p(x_i) = y_i\},\$$

est

$$\{f \in E, \forall i \in \mathbb{N}_n, f(x_i) = y_i\}.$$

Épreuve Nº 6 - Filière MP

Soit $f:[0,1]\to\mathbb{R}$ une fonction continue. Étudier la continuité de la fonction F définie sur [0,1] par,

$$F(x) = \frac{1}{\sqrt{\pi}} \int_{0}^{x} \frac{f(t)}{\sqrt{x-t}} dt.$$

Épreuve N° 7 - Filière MP

Soit $n \geq 2$ et $M \in \mathcal{M}_n(\mathbb{K})$ une matrice de rang 1.

- 1. Montrer que $X^2 tr(M)X$ est le polynôme minimal de M.
- 2. En déduire les puissances de M en fonction de M.

Épreuve Nº 8 - Filière MP

Pour tout $n \in \mathbb{N}^*$ et pour tout x > 0, on pose :

$$h_n(x) = \int_0^{+\infty} \frac{d(t)}{(t^2 + x^4)^n} .$$

1. Montrer que h_n est dérivable sur \mathbb{R}^+_* et vérifie :

$$h'_n(x) = -4nx^3 h_{n+1}(x), \ (\forall n \in \mathbb{N}^*), (\forall x > 0).$$

- 2. Montrer qu'il existe une suite (a_n) telle que $h_n(x) = a_n x^{2-4n}$, $(\forall n \in \mathbb{N}^*)$, $(\forall x > 0)$.
- 3. En déduire $h_n(x)$ pour tout $n \in \mathbb{N}^*$) et pour tout x > 0.

Épreuve Nº 9 - Filière MP

Étudier la classe de la fonction:

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{si } (x,y) \neq 0\\ 0 & \text{si } (x,y) = 0 \end{cases}$$

Épreuve Nº 10 - Filière MP

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^{∞} telle que f(0) = 0.

- 1. Montrer que l'application g définie par $g(x) = \frac{f(x)}{x}$, se prolonge en une application \mathcal{C}^{∞} sur \mathbb{R} .
- 2. On suppose de plus que f(x) > 0 pour $x \neq 0$ et $f''(0) \neq 0$. Montrer qu'il existe une application $g : \mathbb{R} \to \mathbb{R}$ de classe C^{∞} telle que $g^2 = f$.

Épreuve N° 11 - Filière MP

Toutes les variables aléatoires (v.a.) sont définies sur le même espace de probabilité (Ω, P) . Soient X et Y deux v.a. à valeurs dans \mathbb{N}^* telles que :

- pour tout $n \in \mathbb{N}^*, P(Y = n) > 0$,
- pour tout $k, n \in \mathbb{N}^*$,

$$P(x = k|Y = n) = \begin{cases} \frac{1}{n} & \text{si} \quad k \le n\\ 0 & \text{sinon.} \end{cases}$$

1. (a) Soient U, V, W des v.a. à valeurs dans \mathbb{N}^* telles que pour tout entier $k, n \geq 1$,

$$P(W = n) > 0$$
, et $P(U = k|W = n) = P(V = k|W = n)$.

Montrer que U et V suivent la même loi.

- (b) Montrer que les v.a. X et Y + 1 X suivent la même loi.
- 2. Supposons que X suit une loi géométrique. Montrer que les v.a. X et Y+1-X sont indépendantes.

Épreuve N° 12 - Filière MP

On considère la fonction f continue de \mathbb{R}_+ dans \mathbb{R} telle que f(0) = 0 et $\lim_{x \to +\infty} f(x) = 0$.

1. Étudier la convergence simple, uniforme, sur tout le compact de \mathbb{R}_+ de la suite de fonctions,

$$f_n(x) = f(nx).$$

2. Étudier la convergence simple, uniforme, sur tout le compact de \mathbb{R}_+ de la suite de fonctions,

$$f_n(x) = f(\frac{x}{n}).$$

Épreuve N^o 13 - Filière MP

Pour tout $(a, b) \in \mathbb{R}^2$ on définit la fonction f par,

$$f(a,b) = \int_{-1}^{1} |t^2 + at + b| dt.$$

1. Déterminer le minimum de la fonction définie sur \mathbb{R} par,

$$b \to f(0,b)$$
.

2. On fixe $b \in \mathbb{R}$. Déterminer le minimum de la fonction définie sur \mathbb{R} par,

$$a \to f(a,b)$$
.

3. Déterminer le minimum de la fonction f(a,b) lorsque $a,b \in \mathbb{R}$.

Épreuve N^o 14 - Filière MP

Soient A et B deux matrices carrées de dimension n > 1 qui vérifient,

$$rang(AB - BA + I) = 1$$
,

où I est la matrice identité.

- 1. On pose X = AB BA. Montrer que, $tr(X^2) = 2tr(ABAB) 2tr(A^2B^2)$.
- 2. En déduire que, $tr(ABAB) tr(A^2B^2) = \frac{n(n-1)}{2}$. On pourra déterminer les valeurs propres de X.

Épreuve N^o 15 - Filière MP

Soit fonction $f: \mathbb{R} \to \mathbb{R}$ continue, g définie pour x > 0 par,

$$g(x) = \frac{1}{x} \int_{0}^{x} \cos(x - y) f(y) dy.$$

- 1. Déterminer la limite de g en 0.
- 2. On suppose que f a une limite en $+\infty$, déterminer celle de g.

Épreuve N^o 16 - Filière MP

On note $\mathcal{A}_n(\mathbb{R})$ l'espace des matrices antisymétriques à coefficients dans \mathbb{R} . Soit $A \in \mathcal{A}_n(\mathbb{R})$

- 1. Montrer que le spectre de A est inclus dans $i\mathbb{R}$, $(Sp(A) \subset i\mathbb{R})$.
- 2. Montrer que si A est inversible, alors rang(A) est pair.
- 3. Montrer que pour tout $A \in \mathcal{A}_n(\mathbb{R}), P = (I+A)(I-A)^{-1} \in \mathcal{O}_n(\mathbb{R}).$
- 4. On considère l'application :

$$\begin{cases} f: \mathcal{A}_n(\mathbb{R}) & \to \mathcal{O}_n(\mathbb{R}) \\ A & \mapsto f(A) = (I+A)(I-A)^{-1} \end{cases}$$

Montrer que f est une application bijective.

5. Dans cette question on considère que n = 2. Pour $A \in SO_2(\mathbb{R})$, trouver un $B \in \mathcal{A}_2(\mathbb{R})$ tel que $(I + B)(I - B)^{-1} = A$.

Épreuve Nº 17 - Filière PC

On fixe $\alpha > 0$. On pose $I = [0, \frac{\pi}{2}]$. Pour tout $n \in \mathbb{N}$, on définit la fonction :

$$\begin{cases} u_n: I \to \mathbb{R} \\ x \mapsto \sin^n x \cos^\alpha x \end{cases}$$

- 1. Montrer que la série de fonctions $\sum\limits_{n\geq 0}\,\,u_n$ converge simplement sur I.
- 2. Cette série de fonctions converge-t-elle normalement sur I?
- 3. Converge-t-elle uniformément sur I?

Épreuve Nº 18 - Filière PC

Soit un entier $n \geq 2$. On note A la matrice de $\mathcal{M}_n(\mathbb{R})$ dont les coefficients diagonaux valent 0 et les autres coefficients valent 1.

- 1. Calculer A^2 . En déduire que A est inversible et exprimer A^{-1} .
- 2. Déterminer les valeurs propres de A et les espaces propres correspondants.

Épreuve Nº 19 - Filière PC

Soit $(X_i : \Omega \to \mathbb{N}^*)_{i \in \mathbb{N}^*}$, une suite de variables aléatoires indépendantes et suivant toutes la même loi. Soit n fixé dans \mathbb{N}^* . On pose la variable aléatoire :

$$R_n: \omega \mapsto \operatorname{Card}(\{X_1(\omega), \dots, X_n(\omega)\}),$$

où Card(.) est le nombre d'éléments dans $\{X_1(\omega), \ldots, X_n(\omega)\}$ et pour tout $k \in \mathbb{N}^*$,

$$A_{n,k} = \bigcup_{i=1}^{n} \{X_i = k\}.$$

1. Soit $Y:\Omega\to\mathbb{N}^*$ une variable aléatoire bornée par M. Montrer que :

$$\mathbb{E}(Y) \leq M.P(Y \geq 1).$$

2. Montrer que:

$$\lim_{N \to +\infty} \mathbb{E} \left(\sum_{k=N+1}^{+\infty} \mathbf{1}_{A_{n,k}} \right) = 0.$$

3. Montrer que:

$$\mathbb{E}(R_n) = \sum_{k=1}^{+\infty} P(A_{n,k}).$$

4. Étudier la suite $(\mathbb{E}(R_n))_{n\geq 1}$.

Épreuve N° 20 - Filière PC

Soit $n \geq 2$ un entier. Calculer la borne supérieure de l'ensemble :

$$\left\{ \sum_{k=1}^{n-1} x_k . x_{k+1} + x_n x_1 ; \sum_{k=1}^{n-1} x_k^2 = 1 \text{ et } \sum_{k=1}^{n-1} x_k = 0 \right\}.$$

Épreuve Nº 21 - Filière PC

Soit la matrice
$$A = \begin{pmatrix} -2 & 0 & 1 \\ -5 & 3 & 0 \\ -4 & 4 & -2 \end{pmatrix}$$
.

- 1. Montrer que A est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$ et déterminer ses valeurs et vecteurs propres.
- 2. On considère l'équation

$$(E) \quad X^2 - 3X = A,$$

en la matrice inconnue X de $\mathcal{M}_3(\mathbb{R})$.

- 2.a. Vérifier que toute solution de (E) commute avec A.
- 2.b. Déterminer toutes les solutions de (E).
- 3. Calculer A^n où $n \geq 2$.

Épreuve Nº 22 - Filière PC

1. Déterminer le rayon de convergence R de la série entière de terme général

$$\frac{n^3}{n!} x^n$$
.

2. Calculer, pour tout $x \in]-R; R[$, la somme $S(x) = \sum_{n=0}^{+\infty} \frac{n^3}{n!} x^n.$

Épreuve N° 23 - Filière PC

Soit E un espace vectoriel euclidien et a et b, deux vecteurs libres de E. On définit l'application f sur E par,

$$\forall x \in E : f(x) = (a|x)b + (b|x)a.$$

- 1. Déterminer le noyau et l'image de f.
- 2. Déterminer les valeurs propres et sous-espaces propres de f. L'application f est-elle diagonalisable? Pouvait-on prévoir, sans déterminer, ses éléments propres?

Épreuve N° 24 - Filière PC

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs, croissante et de limite égale à $+\infty$. Démontrer que :

$$\int_{0}^{1} \left(\sum_{n=0}^{+\infty} (-1)^{n} x^{a_n} \right) dx = \sum_{n=0}^{+\infty} \frac{(-1)^n}{1 + a_n}.$$

9

Épreuve N^o 25 - Filière PSI

Soit $n \geq 2$.

Soit $\delta \geq 0$, on note P_{δ} la matrice diagonale dont les coefficients diagonaux sont $\delta, \delta^2, \delta^3, \ldots, \delta^n$. Soit $A \in \mathcal{M}_n(\mathbf{C})$, on note $S_A = \{P^{-1}AP, P \in GL_n(\mathbf{C})\}$, l'ensemble des matrices semblables à A.

- 1. Déterminer les coefficients de $P_{\delta}^{-1}AP_{\delta}$ en fonction de ceux de A.
- 2. On suppose qu'il existe $k \in \mathbb{N}$ tel que $A^k = 0$. Montrer qu'il existe une suite $(B_p)_{p \geq 0}$ de matrices de S_A tendant vers la matrice nulle. On pourra commencer par trigonaliser la matrice A.
- 3. Réciproquement, montrer que s'il existe une suite $(B_p)_{p\geq 0}$ de matrices de S_A tendant vers la matrice nulle, alors il existe un $k\in\mathbb{N}$ tel que $A^k=0$.

Épreuve N° 26 - Filière PSI

Pour tout entier naturel n, on note u_n le nombre de triplets (a, b, c) d'entiers naturels tels que,

$$3a + 4b + 5c = n.$$

Déterminer un équivalent de u_n quand n tend vers $+\infty$. On pourra commencer par trouver un encadrement de v_m qui désigne le nombre de couples $(a,b) \in \mathbb{N}^2$ tels que 3a+4b=m.

Épreuve N^o 27 - Filière PSI

Exercice 1

- 1. Démontrer que l'équation d'inconnue $X \in \mathcal{M}_2(\mathbb{C})$: $X^r = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, n'a pas de solution pour $r \geq 2$.
- 2. Déterminer les solutions de l'équation $X \in \mathcal{M}_2(\mathbb{C}) : X^r = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

Exercice 2

On considère la suite de fonctions (f_n) définies par récurrence par :

$$\forall x \in \mathbb{R}_+^*, f_0(x) = x \text{ et } \forall n \in \mathbb{N}, \forall x \in \mathbb{R}_+^*, \quad f_{n+1}(x) = \frac{1}{2} \left(f_n(x) + \frac{x}{f_n(x)} \right).$$

Étudier la convergence simple et la convergence uniforme de cette suite de fonctions.

Épreuve N^o 28 - Filière PSI

Exercice 1 Soit
$$f: x \mapsto \int_{0}^{+\infty} \frac{e^{-t-x/y}}{\sqrt{t}} dt$$
.

- 1. Montrer que f est définie sur \mathbb{R}^+ .
- 2. Montrer que f est \mathcal{C}^2 sur \mathbb{R}_+^* , et vérifie l'équation différentielle :(E) : 2xy''+y'-2y=0.
- 3. On pose $y(x) = z(\sqrt{x})$. Résoudre (E).
- 4. Donner l'expression de f(x).

Exercice 2

Soient E un espace vectoriel de dimension finie $n \geq 2$ sur $\mathbb{K}, d \in \{1, \dots, n-1\}$. Déterminer les endomorphismes E stabilisant tous les sous-espaces de E de dimension d.

11